Trends in Psychiatry and Psychotherapy
https://trends.org.br/article/doi/10.1590/2237-6089-2015-0081
Trends in Psychiatry and Psychotherapy
Original Article

IL-6 and IL-10 levels in the umbilical cord blood of newborns with a history of crack/cocaine exposure in utero: a comparative study

Níveis de IL-6 e IL-10 no sangue de cordão umbilical de recém-nascidos com história de exposição intrauterina ao crack/cocaína: um estudo comparativo

Victor Mardini; Luis Augusto Rohde; Keila Maria Mendes Ceresér; Carolina de Moura Gubert; Emily Galvão da Silva; Fernando Xavier; Rodrigo Parcianello; Liane Marise Röhsig; Flávio Pechansky; Thiago Gatti Pianca; Claudia M. Szobot

Downloads: 0
Views: 361

Abstract

Introduction Prenatal cocaine exposure (PCE) is associated with neurobehavioral problems during childhood and adolescence. Early activation of the inflammatory response may contribute to such changes. Our aim was to compare inflammatory markers (IL-6 and IL-10) both in umbilical cord blood and in maternal peripheral blood at delivery between newborns with history of crack/cocaine exposure in utero and non-exposed newborns. Methods In this cross-sectional study, 57 newborns with a history of crack/cocaine exposure in utero (EN) and 99 non-exposed newborns (NEN) were compared for IL-6 and IL-10 levels. Sociodemographic and perinatal data, maternal psychopathology, consumption of nicotine and other substances were systematically collected in cases and controls. Results After adjusting for potential confounders, mean IL-6 was significantly higher in EN than in NEN (10,208.54, 95% confidence interval [95%CI] 1,328.54-19,088.55 vs. 2,323.03, 95%CI 1,484.64-3,161.21; p = 0.007; generalized linear model [GLM]). Mean IL-10 was also significantly higher in EN than in NEN (432.22, 95%CI 51.44-812.88 vs. 75.52, 95%CI 5.64-145.39, p = 0.014; GLM). Adjusted postpartum measures of IL-6 were significantly higher in mothers with a history of crack/cocaine use (25,160.05, 95%CI 10,958.15-39,361.99 vs. 8,902.14, 95%CI 5,774.97-12,029.32; p = 0.007; GLM), with no significant differences for IL-10. There was no correlation between maternal and neonatal cytokine levels (Spearman test, p ≥ 0.28 for all measures). Conclusions IL-6 and IL-10 might be early biomarkers of PCE in newborns. These findings could help to elucidate neurobiological pathways underlying neurodevelopmental changes and broaden the range of possibilities for early intervention.

Keywords

Cytokines, pregnancy, crack cocaine, umbilical cord blood, newborn, interleukins

Resumo

Introdução A exposição pré-natal à cocaína está associada a problemas neurocomportamentais durante a infância e adolescência. A ativação precoce da resposta inflamatória pode contribuir para tais alterações. Nosso objetivo foi comparar marcadores inflamatórios (IL-6 e IL-10) no sangue do cordão umbilical e no sangue periférico materno na hora do parto, entre recém-nascidos expostos ao crack intraútero e recém-nascidos não expostos. Métodos Neste estudo transversal, 57 recém-nascidos expostos ao crack intraútero (RNE) e 99 recém-nascidos não expostos (RNNE) foram comparados quanto aos níveis de IL-6 e IL-10. Dados sociodemográficos e perinatais, psicopatologia materna, consumo de nicotina e outras substâncias foram sistematicamente coletados em casos e controles. Resultados Após o ajuste para potenciais confundidores, a média de IL-6 foi significativamente maior nos RNE em comparação aos RNNE [10.208,54, intervalo de confiança (IC95%) 1.328,54-19.088,55 versus2.323,03, IC95% 1.484,64-3.161,21; p = 0,007; modelo linear generalizado (MLG)]. A média ajustada de IL-10 foi significativamente maior nos RNE do que nos RNNE (432,2189, IC95% 51,44-812,88 versus 75,52, IC95% 5,64-145,39, p = 0,014; MLG). Medidas pós-parto ajustadas de IL-6 foram significativamente maiores nas mães que usaram de crack/cocaína (25.160,05, IC95% 10.958,15-39.361,99 versus 8.902,14, IC95% 5.774,97-12.029,32; p = 0,007; MLG), sem diferenças significativas para IL-10. Não houve correlação entre níveis maternos e neonatais de citocinas (teste de Spearman, p ≥ 0,28 para todas as medidas). Conclusões IL-6 e IL-10 podem ser biomarcadores precoces da exposição pré-natal a cocaína em recém-nascidos. Esses resultados podem ajudar a elucidar as vias neurobiológicas subjacentes a alterações do desenvolvimento e aumentar a gama de possibilidades para intervenção precoce.

Palavras-chave

Cocaína crack, interleucinas, recém-nascido, gestação

References

Lester BM, Tronick EZ, LaGasse L, Seifer R, Bauer CR, Shankaran S. The maternal lifestyle study: effects of substance exposure during pregnancy on neurodevelopmental outcome in 1-month-old infants. Pediatrics. 2002;110:1182-92.

Min MO, Minnes S, Lang A, Weishampel P, Short EJ, Yoon S. Externalizing behavior and substance use related problems at 15 years in prenatally cocaine exposed adolescents. J Adolesc. 2014;37:269.

Richardson GA, Goldschmidt L, Larkby C, Day NL. Effects of prenatal cocaine exposure on child behavior and growth at 10 years of age. Neurotoxicol Teratol. 2013;40:1-8.

Meyer KD, Zhang L. Short- and long-term adverse effects of cocaine abuse during pregnancy on the heart development. Ther Adv Cardiovasc Dis. 2009;3:7-16.

LaGasse LL, Gaskins RB, Bada HS, Shankaran S, Liu J, Lester BM. Prenatal cocaine exposure and childhood obesity at nine years. Neurotoxicol Teratol. 2011;33:188-97.

Shankaran S, Bann CM, Bauer CR, Lester BM, Bada HS, Das A. Prenatal cocaine exposure and BMI and blood pressure at 9 years of age. J Hypertens. 2010;28:1166-75.

Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860-7.

Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4-7.

Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685-95.

Kiecolt-Glaser JK, Gouin JP, Hantsoo L. Close relationships, inflammation, and health. Neurosci Biobehav Rev. 2010;35:33-8.

Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135-43.

Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117:1175-83.

Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27:813-23.

Tian R, Hou G, Li D, Yuan TF. A possible change process of inflammatory cytokines in the prolonged chronic stress and its ultimate implications for health. ScientificWorldJournal. 2014;2014:780616.

Sinha R. How does stress increase risk of drug abuse and relapse. Psychopharmacology (Berl). 2001;158:343-59.

Fox HC, D'Sa C, Kimmerling A, Siedlarz KM, Tuit KL, Stowe R. Immune system inflammation in cocaine dependent individuals: implications for medications development. Hum Psychopharmacol. 2012;27:156-66.

Narvaez JC, Magalhães PV, Fries GR, Colpo GD, Czepielewski LS, Vianna P. Peripheral toxicity in crack cocaine use disorders. Neurosci Lett. 2013;544:80-4.

De Giovanni N, Marchetti D. Cocaine and its metabolites in the placenta: a systematic review of the literature. Reprod Toxicol. 2012;33:1-14.

Riezzo I, Fiore C, De Carlo D, Pascale N, Neri M, Turillazzi E. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem. 2012;19:5624-46.

Eiden RD, Veira Y, Granger DA. Prenatal cocaine exposure and infant cortisol reactivity. Child Dev. 2009;80:528-43.

Brown JV, Bakeman R, Coles CD, Platzman KA, Lynch ME. Prenatal cocaine exposure: a comparison of 2-year-old children in parental and nonparental care. Child Dev. 2004;75:1282-95.

Karlix JL, Behnke M, Davis-Eyler F, Wobie K, Adams V, Freiburger B. Cocaine suppresses fetal immune system. Pediatr Res. 1998;44:43-6.

Diesner SC, Förster-Waldl E, Olivera A, Pollak A, Jensen-Jarolim E, Untersmayr E. Perspectives on immunomodulation early in life. Pediatr Allergy Immunol. 2012;23:210-23.

Chatterjee P, Chiasson VL, Bounds KR, Mitchell BM. Regulation of the anti-inflammatory cytokines interleukin-4 and interleukin-10 during pregnancy. Front Immunol. 2014;5:253.

NetCord-FACT International Standards for Cord Blood Collection, Banking, and Release for Administration. 2013.

Nascimento do E, Figueiredo de VLM. WISC-III e WAIS-III: alterações nas versões originais americanas decorrentes das adaptações para uso no Brasil. Psicol Reflex Crit. 2002;15:603-12.

Wechsler D. WAIS-III - Escala de inteligência Wechsler para adultos. 2004.

Amorim P. Mini International Neuropsychiatric Interview (MINI): validação de entrevista breve para diagnóstico de transtornos mentais. Rev Bras Psiquiatr. 2000;22:106-15.

Henrique IF, De Micheli D, Lacerda RB, Lacerda LA, Formigoni ML. [Validation of the Brazilian version of Alcohol, Smoking and Substance Involvement Screening Test (ASSIST)]. Rev Assoc Med Bras. 2004;50:199.

Szobot CM, Rohde LA, Bukstein O, Molina BS, Martins C, Ruaro P. Is attention-deficit/hyperactivity disorder associated with illicit substance use disorders in male adolescents? A community-based case-control study. Addiction. 2007;102:1122-30.

Mattar FN. Análise crítica dos estudos de estratificação sócio-econômicada ABA-Abipeme. Rev Adm. 1995;30:57-74.

Manrique-Garcia E, Zammit S, Dalman C, Hemmingsson T, Andreasson S, Allebeck P. Cannabis, schizophrenia and other non-affective psychoses: 35 years of follow-up of a population-based cohort. Psychol Med. 2012;42:1321-8.

Hermida-Ameijeiras A, Méndez-Alvarez E, Sánchez-Iglesias S, Sanmartín-Suárez C, Soto-Otero R. Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int. 2004;45:103-16.

Smythies J, Galzigna L. The oxidative metabolism of catecholamines in the brain: a review. Biochim Biophys Acta. 1998;1380:159-62.

Vaziri ND. Causal link between oxidative stress, inflammation, and hypertension. Iran J Kidney Dis. 2008;2:1-10.

Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37:137-62.

Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am. 2009;29:247-64.

Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol. 2006;6:318-28.

Leckman JF. Commentary: What does immunology have to do with brain development and psychopathology?--a commentary on O'Connor et al. (2014). J Child Psychol Psychiatry. 2014;55:632-4.

O'Connor TG, Moynihan JA, Caserta MT. Annual research review: the neuroinflammation hypothesis for stress and psychopathology in children--developmental psychoneuroimmunology. J Child Psychol Psychiatry. 2014;55:615-31.

Glover V. Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Adv Neurobiol. 2015;10:269-83.

Cheng CY, Pickler RH. Perinatal stress, fatigue, depressive symptoms, and immune modulation in late pregnancy and one month postpartum. ScientificWorldJournal. 2014;2014:652630.

Coussons-Read ME, Okun ML, Nettles CD. Psychosocial stress increases inflammatory markers and alters cytokine production across pregnancy. Brain Behav Immun. 2007;21:343-50.

Ruiz RJ, Fullerton J, Dudley DJ. The interrelationship of maternal stress, endocrine factors and inflammation on gestational length. Obstet Gynecol Surv. 2003;58:415-28.

Delaney-Black V, Covington C, Nordstrom B, Ager J, Janisse J, Hannigan JH. Prenatal cocaine: quantity of exposure and gender moderation. J Dev Behav Pediatr. 2004;25:254-63.

Nordstrom Bailey B, Sood BG, Sokol RJ, Ager J, Janisse J, Hannigan JH. Gender and alcohol moderate prenatal cocaine effects on teacher-report of child behavior. Neurotoxicol Teratol. 2005;27:181-9.

Kiecolt-Glaser JK, Gouin JP, Weng NP, Malarkey WB, Beversdorf DQ, Glaser R. Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosom Med. 2011;73:16-22.

Lester BM, Padbury JF. Third pathophysiology of prenatal cocaine exposure. Dev Neurosci. 2009;31:23-35.

Tyrka AR, Burgers DE, Philip NS, Price LH, Carpenter LL. The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatr Scand. 2013;128:434-47.

Sadri-Vakili G. Cocaine triggers epigenetic alterations in the corticostriatal circuit. Brain Res. 2015;1628:50-9.

Baune BT, Konrad C, Grotegerd D, Suslow T, Birosova E, Ohrmann P. Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain. J Neuroinflammation. 2012;9:125.

Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry. 2008;64:484-90.

Bandstra ES, Morrow CE, Vogel AL, Fifer RC, Ofir AY, Dausa AT. Longitudinal influence of prenatal cocaine exposure on child language functioning. Neurotoxicol Teratol. 2002;24:297-308.

Delaney-Black V, Covington C, Templin T, Kershaw T, Nordstrom-Klee B, Ager J. Expressive language development of children exposed to cocaine prenatally: literature review and report of a prospective cohort study. J Commun Disord. 2000;33:463-81.

Eyler FD, Behnke M, Conlon M, Woods NS, Wobie K. Birth outcome from a prospective, matched study of prenatal crack/cocaine use: II. Interactive and dose effects on neurobehavioral assessment. Pediatrics. 1998;101:237-41.

Potter SM, Zelazo PR, Stack DM, Papageorgiou AN. Adverse effects of fetal cocaine exposure on neonatal auditory information processing. Pediatrics. 2000;105:E40.

Singer LT, Arendt R, Minnes S, Farkas K, Salvator A, Kirchner HL. Cognitive and motor outcomes of cocaine-exposed infants. JAMA. 2002;287:1952-60.

Baraban SC, Schwartzkroin PA. Effects of prenatal cocaine exposure on the developing hippocampus: intrinsic and synaptic physiology. J Neurophysiol. 1997;77:126-36.

Chaudhry IB, Hallak J, Husain N, Minhas F, Stirling J, Richardson P. Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J Psychopharmacol. 2012;26:1185-93.

Lotrich FE, Sears B, McNamara RK. Elevated ratio of arachidonic acid to long-chain omega-3 fatty acids predicts depression development following interferon-alpha treatment: relationship with interleukin-6. Brain Behav Immun. 2013;31:48-53.

Miyaoka T, Wake R, Furuya M, Liaury K, Ieda M, Kawakami K. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37:222-6.

Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70:31-41.

Carpenter LL, Gawuga CE, Tyrka AR, Lee JK, Anderson GM, Price LH. Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology. 2010;35:2617-23.

Mesquita AR, Correia-Neves M, Roque S, Castro AG, Vieira P, Pedrosa J. IL-10 modulates depressive-like behavior. J Psychiatr Res. 2008;43:89-97.

Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry. 2008;13:208-21.

Sukoff Rizzo SJ, Neal SJ, Hughes ZA, Beyna M, Rosenzweig-Lipson S, Moss SJ. Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes. Transl Psychiatry. 2012;2:e199.

6169e138a953955bec032db2 trends Articles
Links & Downloads

Trends Psychiatry Psychother

Share this page
Page Sections